On the enumeration of rational plane curves with tangency conditions

نویسنده

  • Charles Cadman
چکیده

We use twisted stable maps to answer the following question. Let E ⊂ P2 be a smooth cubic. How many rational degree d curves pass through a general points of E , have b specified tangencies with E and c unspecified tangencies, and pass through 3d − 1 − a − 2b − c general points of P2? The answer is given as a generalization of Kontsevich’s recursion. We also investigate more general enumerative problems of this sort, and prove an analogue of a formula of Caporaso and Harris.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact Formulas for Rational Plane Curves via Stable Maps

Extending techniques of [4], we use stable maps, and their stable lifts to the Semple bundle variety of second-order curvilinear data, to calculate certain characteristic numbers for rational plane curves. These characteristic numbers involve first-order (tangency) and second-order (inflectional) conditions. Although they may be virtual, they may be used as inputs in an enumeratively significan...

متن کامل

Using Stacks to Impose Tangency Conditions on Curves

We define a Deligne-Mumford stack XD,r which depends on a scheme X , an effective Cartier divisor D ⊂ X , and a positive integer r . Then we show that the Abramovich-Vistoli moduli stack of stable maps into XD,r provides compactifications of the locally closed substacks of M̄g,n(X,β) corresponding to relative stable maps. We also state an enumerative result counting rational plane curves with ta...

متن کامل

Enumeration of Genus-three Plane Curves with a Fixed Complex Structure

We give a practical formula for counting irreducible nodal genus-three plane curves with a fixed general complex structure on the normalization. As an intermediate step, we enumerate rational plane curves that have a (3, 4)-cusp.

متن کامل

Enumeration of Rational Plane Curves Tangent to a Smooth Cubic

We use twisted stable maps to compute the number of rational degree d plane curves having prescribed contacts to a smooth plane cubic.

متن کامل

Characteristic numbers of rational curves with cusp or prescribed triple contact Joachim Kock

This note pursues the techniques of modified psi classes on the stack of stable maps (cf. [Graber-Kock-Pandharipande]) to give concise solutions to the characteristic number problem of rational curves in P2 or P1×P1 with a cusp or a prescribed triple contact. The classes of such loci are computed in terms of modified psi classes, diagonal classes, and certain codimension-2 boundary classes. Via...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005